Decision Diagrams for Integer Linear and Nonlinear Programming

Willem-Jan van Hoeve (Carnegie Mellon University)

Joint work with: Danial Davarnia (Iowa State University) Christian Tjandraatmadja (Google)

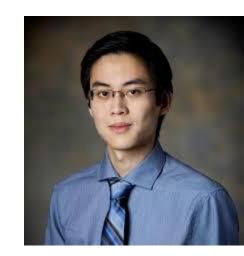
EURO, June 2019

Decision Diagrams for Integer Linear and Nonlinear Programming

Willem-Jan van Hoeve (Carnegie Mellon University)

Joint work with: Danial Davarnia (Iowa State University) Christian Tjandraatmadja (Google)

EURO, June 2019



Carnegie Mellon University

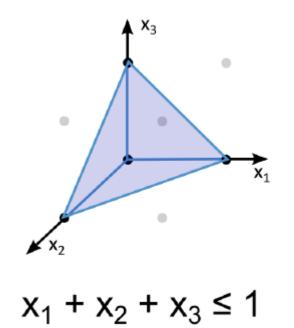
Overview

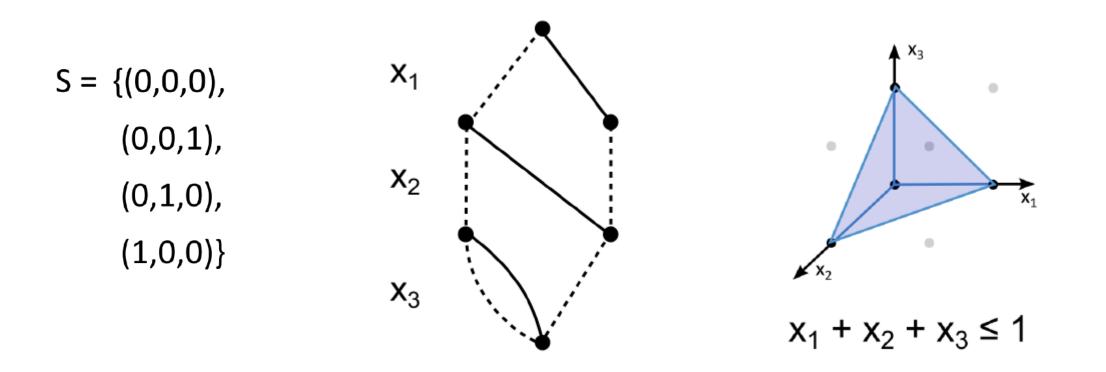
- Motivation
- Decision Diagrams for Integer Programming
 - incorporate DD bounds in MIP search
 - cut generation
 - outer approximation for MINLP
- Conclusions

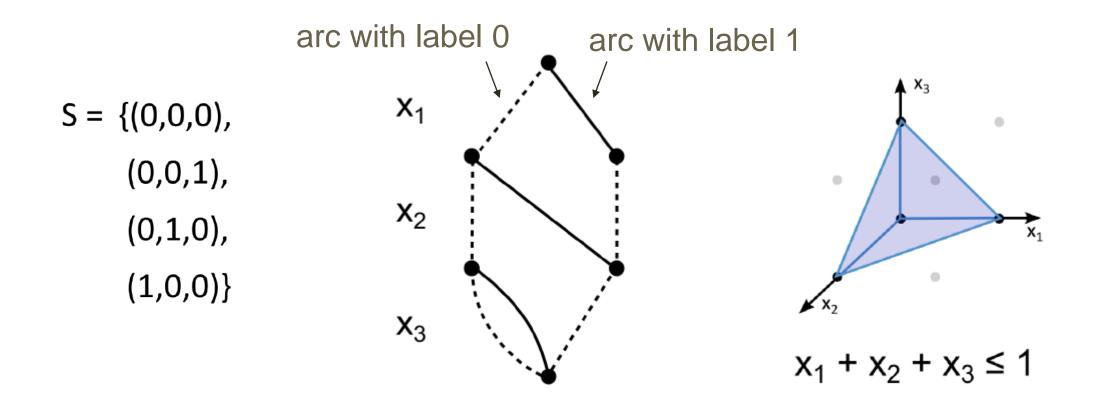
Carnegie Mellon University

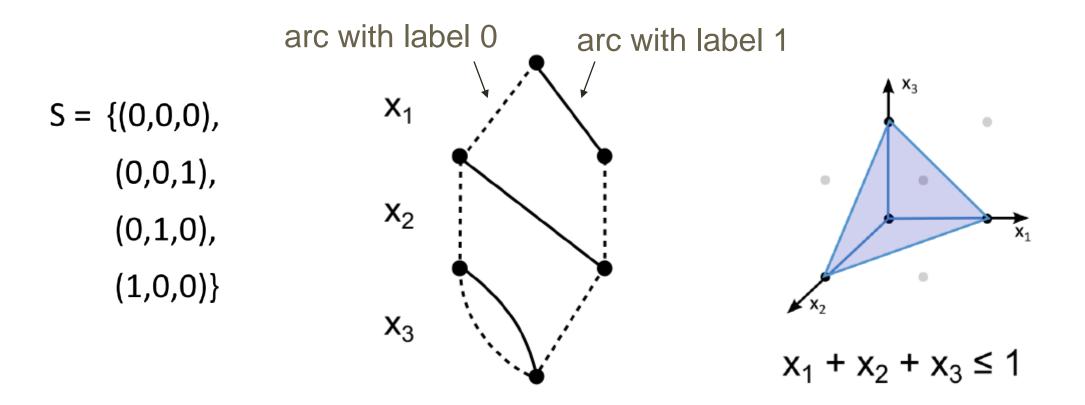
 $S = \{(0,0,0), \\ (0,0,1), \\ (0,1,0), \\ (1,0,0)\}$

 $S = \{(0,0,0), \\ (0,0,1), \\ (0,1,0), \\ (1,0,0)\}$



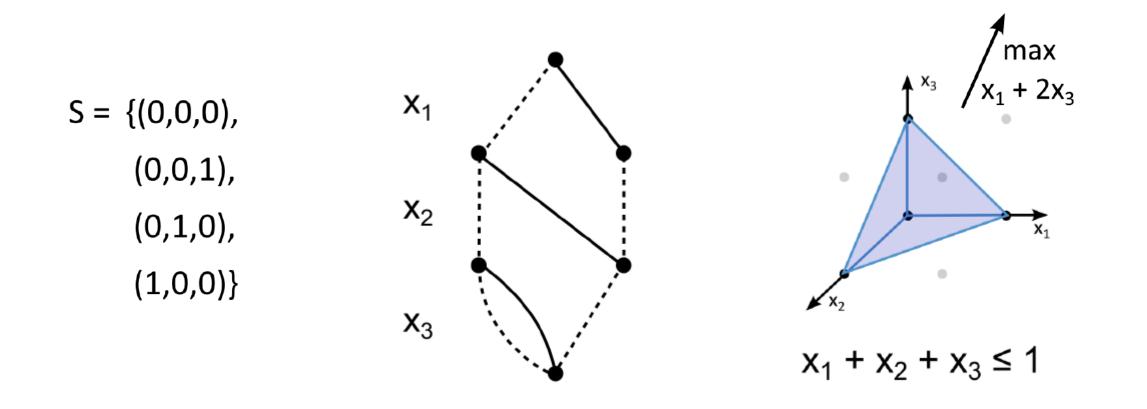


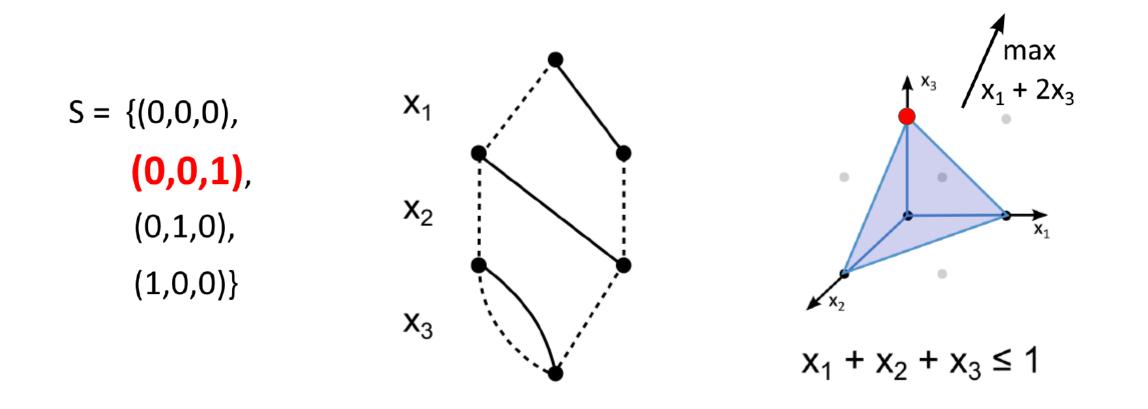


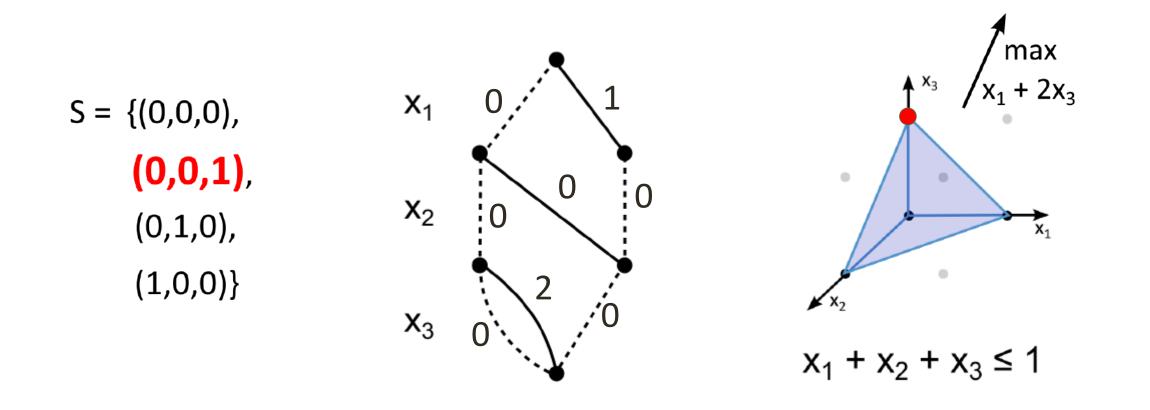


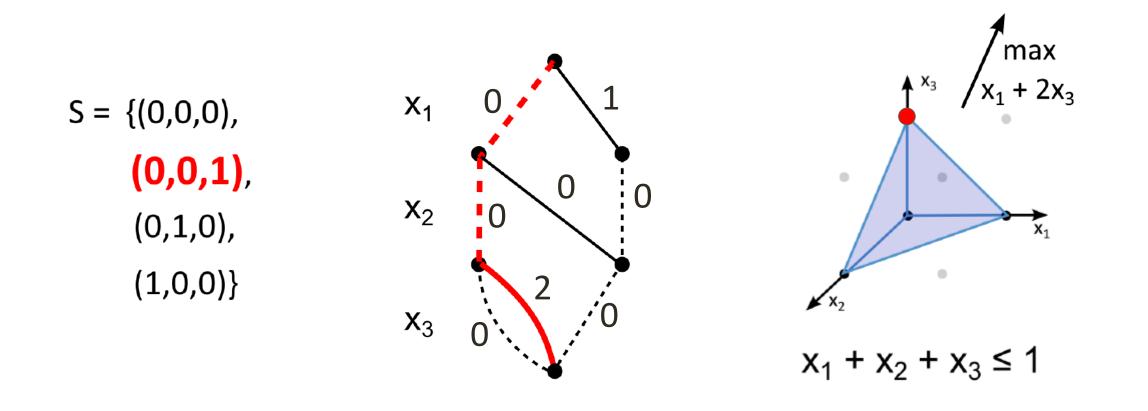
BDD: binary decision diagram MDD: multi-valued decision diagram

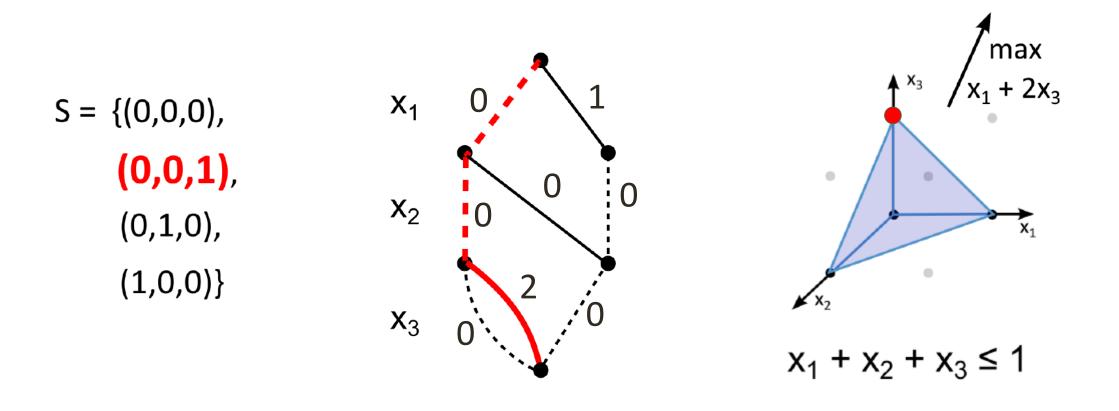












optimal objective value: 2

- Relaxed Decision Diagrams have limited width: polynomial size
- Over-approximation of feasible set: dual bound

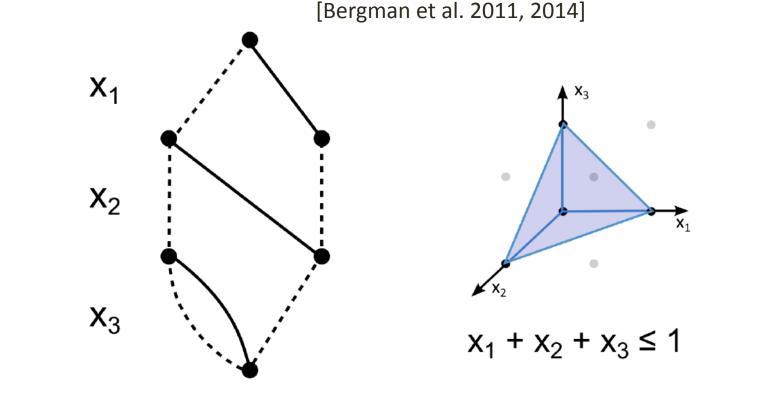
[Andersen et al. 2007]

[Bergman et al. 2011, 2014]

- Relaxed Decision Diagrams have limited width: polynomial size
- · Over-approximation of feasible set: dual bound

[Andersen et al. 2007]

 $S = \{(0,0,0), \\ (0,0,1), \\ (0,1,0), \\ (1,0,0)\}$



• Relaxed Decision Diagrams have limited width: polynomial size

[Bergman et al. 2011, 2014]

Over-approximation of feasible set: dual bound

[Andersen et al. 2007]

 $S = \{(0,0,0), \\ (0,0,1), \\ (0,1,0), \\ (1,0,0)\} \\ X_{3}$ X_{1} X_{1} X_{2} X_{3} X_{1} X_{2} X_{2} X_{1} X_{2} X_{1} X_{2} X_{1} X_{2} X_{1} X_{2} X_{1} X_{2} X_{2} X_{1} X_{2} X_{1} X_{2} X_{2} X_{1} X_{2} X_{1} X_{2} X_{1} X_{2} X_{2} X_{1} X_{2} X_{2} X_{1} X_{2} X_{2} X_{3} X_{1} X_{2} X_{1} X_{2} X_{2} X_{1} X_{2} X_{2} X_{3} X_{1} X_{2} X_{1} X_{2} X_{2} X_{1} X_{2} X_{1} X_{2} X_{2} X_{1} X_{2} X_{2} X_{3} X_{1} X_{2} X_{1} X_{2} X_{2} X_{1} X_{2} X_{2} X_{3} X_{1} X_{2} X_{1} X_{2} X_{1} X_{2} X_{2} X_{3} X_{1} X_{2} X_{3} X_{1} X_{2} X_{2} X_{3} X_{3} X_{4} X_{4} X_{5} $X_{$

• Relaxed Decision Diagrams have limited width: polynomial size

[Bergman et al. 2011, 2014]

· Over-approximation of feasible set: dual bound

[Andersen et al. 2007]

 $S = \{(0,0,0), \\ (0,0,1), \\ (0,1,0), \\ (1,0,0)\} \\ X_{3} \\ X_{3} \\ X_{1} + x_{2} + x_{3} \le 1$

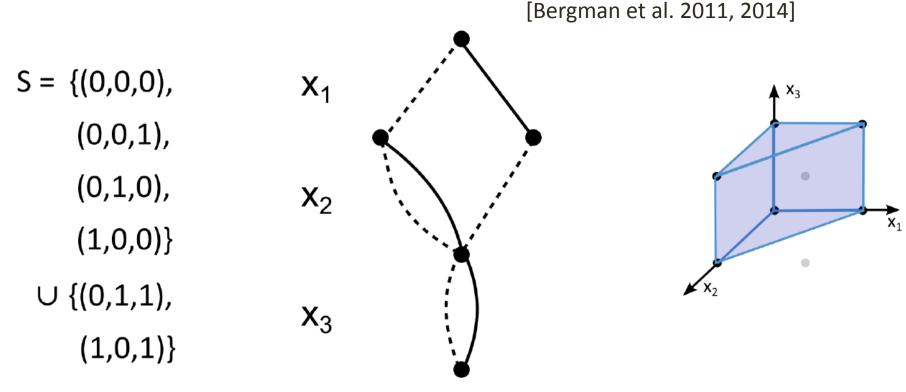
Relaxed Decision Diagrams have limited width: polynomial size

[Bergman et al. 2011, 2014]

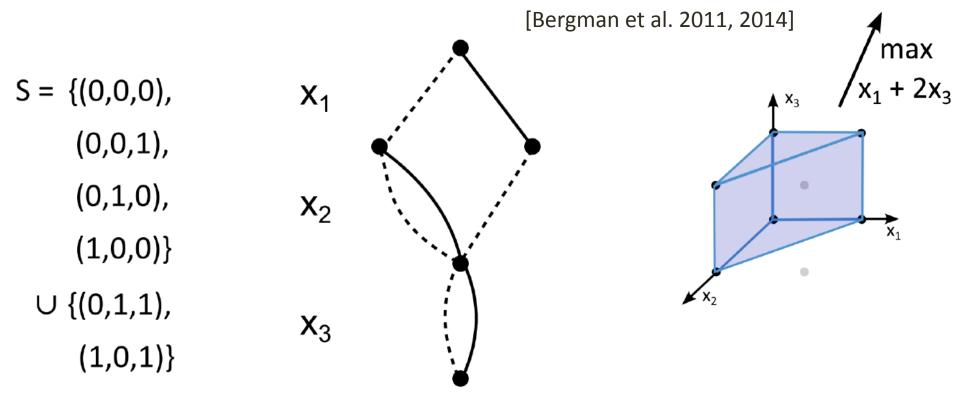
Over-approximation of feasible set: dual bound

[Andersen et al. 2007]

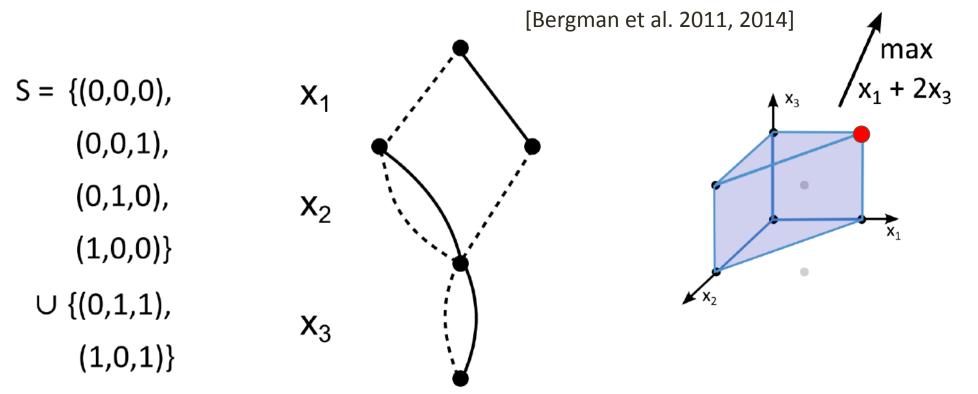
- Relaxed Decision Diagrams have limited width: polynomial size
- · Over-approximation of feasible set: dual bound



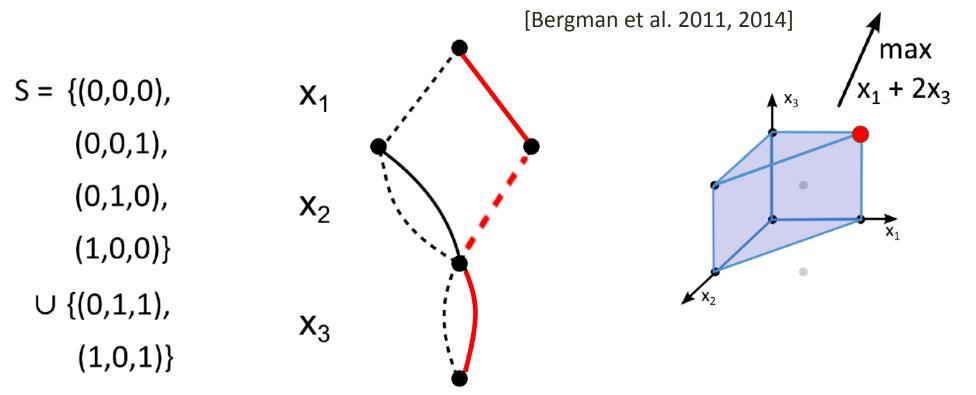
- Relaxed Decision Diagrams have limited width: polynomial size
- Over-approximation of feasible set: dual bound



- Relaxed Decision Diagrams have limited width: polynomial size
- Over-approximation of feasible set: dual bound



- Relaxed Decision Diagrams have limited width: polynomial size
- Over-approximation of feasible set: dual bound



- Relaxed Decision Diagrams have limited width: polynomial size
- Over-approximation of feasible set: dual bound

[Bergman et al. 2011, 2014] max $+ 2x_{2}$ $S = \{(0,0,0),$ **X**₁ X₃ (0,0,1), (0,1,0), X_2 X_1 (1,0,0) \cup {(0,1,1), X_3 (1,0,1)upper bound: 3

Categories of Successful Applications

- Sequencing and routing problems
 - single machine scheduling with setup times, time windows, precedence constraints (including TSPTW)
 [Cire & vH, OR2013], [Kinable et al. EJOR 2017] [O'Neil & Hoffman, ORL2019]
- Decomposition and embedding in MIP models
 - nonlinear objective functions
 - column generation
- Combinatorial optimization – MISP, MAX-CUT, MAX-2SAT, ...
- Constraint Programming
 - DD-based constraint propagation

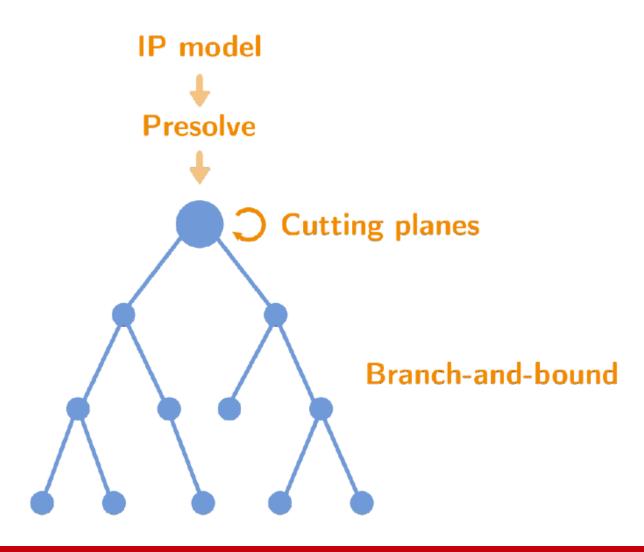
[Bergman&Cire, MgtSc 2018]

[Morrison et al. IJOC 2016] [Kowalczyk & Leus IJOC 2018]

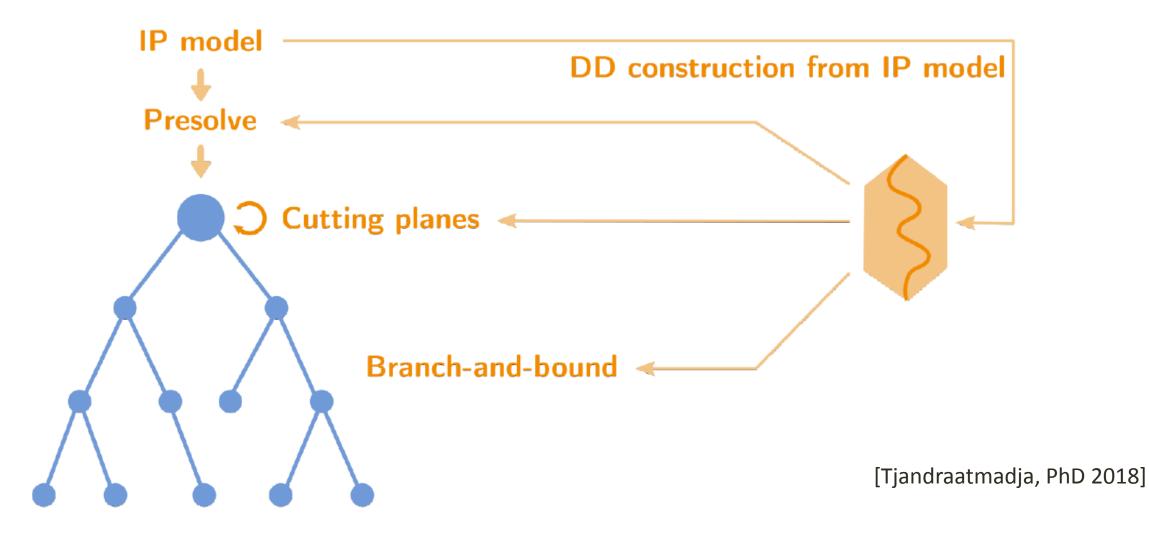
[CPAIOR 2011, 2012] [IJOC 2014, 2016] [J Heur 2014]

[Andersen et al. CP2007] [Hoda et al. CP2010]

Application to Integer Programming



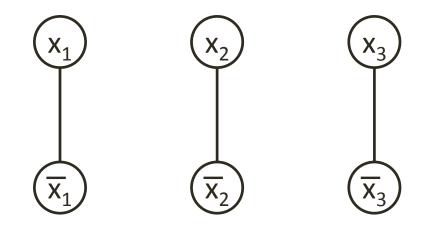
Application to Integer Programming



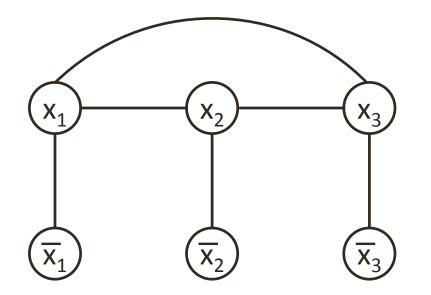
- Option 1: use linear constraints from model
 - single DD for (subset) of constraints; usually weaker than LP bound
 - (using *multiple* DDs can be quite effective, for nonlinear problems)

- Option 1: use linear constraints from model
 - single DD for (subset) of constraints; usually weaker than LP bound
 - (using *multiple* DDs can be quite effective, for nonlinear problems)
- Option 2: identify structure in model
 - e.g. set covering, set packing, independent set,...
 - dedicated DD representing substructure of the model
 - can be stronger than LP bound, and faster to compute

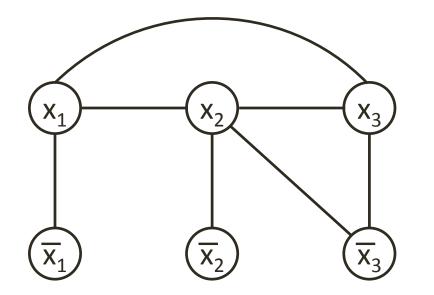
- Option 1: use linear constraints from model
 - single DD for (subset) of constraints; usually weaker than LP bound
 - (using *multiple* DDs can be quite effective, for nonlinear problems)
- Option 2: identify structure in model
 - e.g. set covering, set packing, independent set,...
 - dedicated DD representing substructure of the model
 - can be stronger than LP bound, and faster to compute
- Option 3: use structure inferred by solver
 - conflict graph/clique table



 $\begin{aligned} x_1 + x_2 + x_3 &\leq 1 \\ x_2 + (1 - x_3) &\leq 1 \\ (1 - x_1) + (1 - x_2) &\leq 1 \end{aligned}$

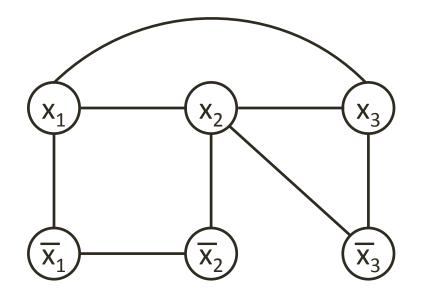


 $x_1 + x_2 + x_3 \le 1$ $x_2 + (1 - x_3) \le 1$ $(1 - x_1) + (1 - x_2) \le 1$



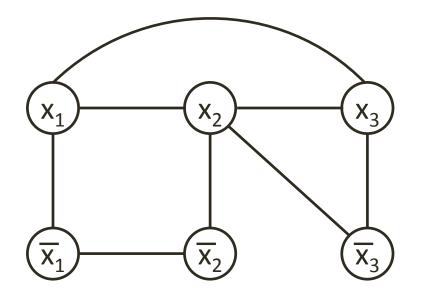
 $x_1 + x_2 + x_3 \le 1$ $x_2 + (1 - x_3) \le 1$ $(1 - x_1) + (1 - x_2) \le 1$

Conflict Graph for Binary Problems



 $x_1 + x_2 + x_3 \le 1$ $x_2 + (1 - x_3) \le 1$ $(1 - x_1) + (1 - x_2) \le 1$

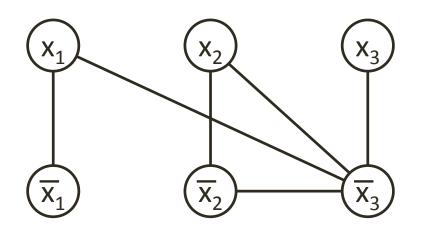
Conflict Graph for Binary Problems



 $x_1 + x_2 + x_3 \le 1$ $x_2 + (1 - x_3) \le 1$ $(1 - x_1) + (1 - x_2) \le 1$

Conflict graphs are inferred and constructed by most modern MIP solvers [Atamtürk et al., 2000; Achterberg, 2007]

- State: variable domains
- Transition: propagate decision



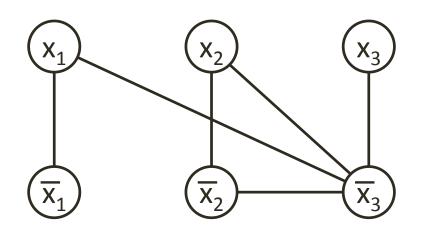
 $x_1 \in \{0, 1\}, x_2 \in \{0, 1\}, x_3 \in \{0, 1\}$

 x_1

 x_2

 x_3

- State: variable domains
- Transition: propagate decision



$$x_{1} \in \{0,1\}, x_{2} \in \{0,1\}, x_{3} \in \{0,1\}$$

$$x_{1}$$

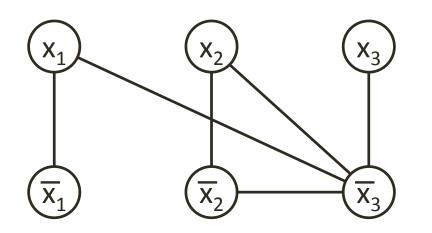
$$x_{2} \in \{0,1\}, x_{3} \in \{0,1\} \bullet$$

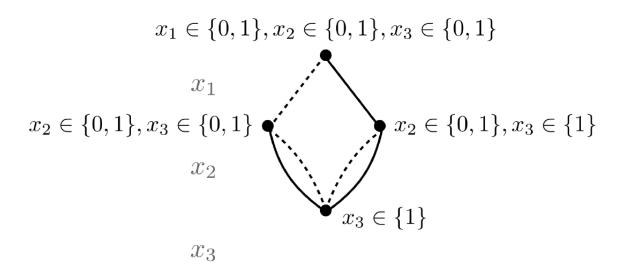
$$x_{2} \quad x_{2} \in \{0,1\}, x_{3} \in \{1\}$$

$$x_{2}$$

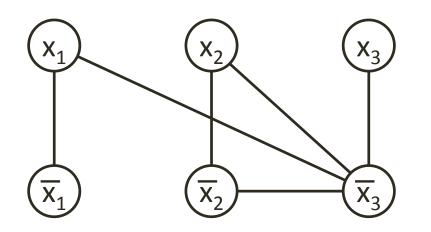
 x_3

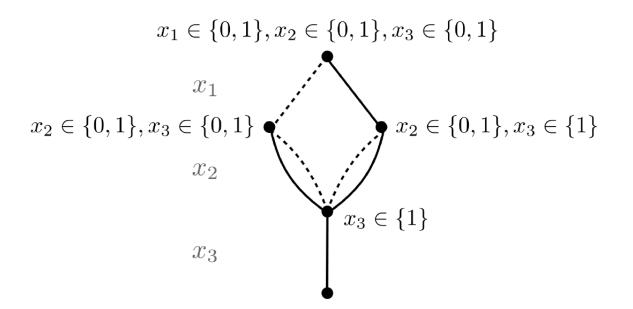
- State: variable domains
- Transition: propagate decision



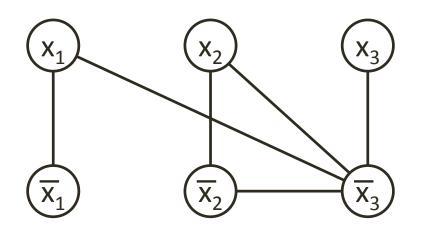


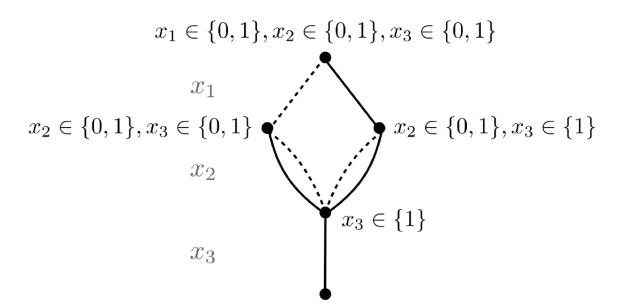
- State: variable domains
- Transition: propagate decision



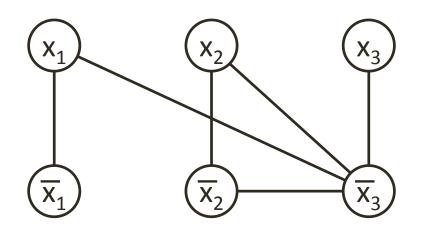


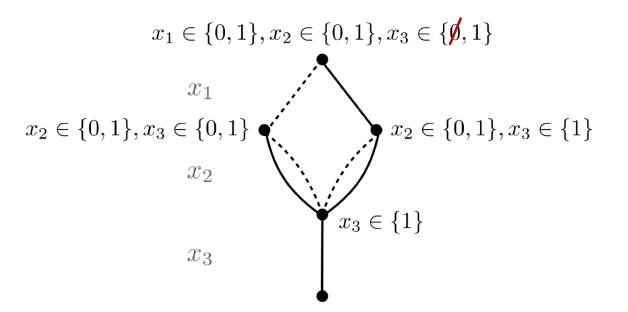
- State: variable domains
- Transition: propagate decision



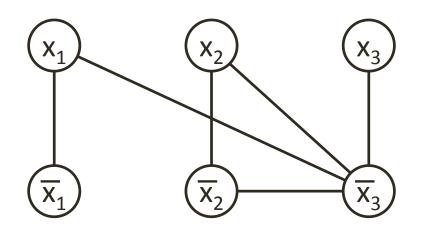


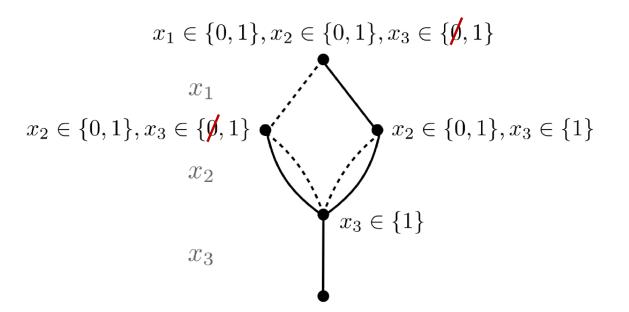
- State: variable domains
- Transition: propagate decision



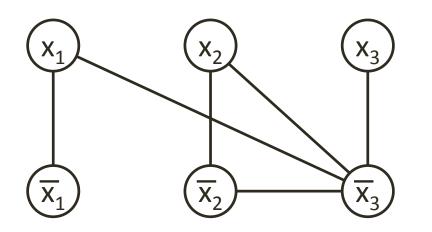


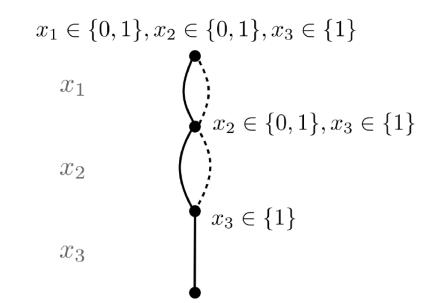
- State: variable domains
- Transition: propagate decision





- State: variable domains
- Transition: propagate decision





Original IP model

max $c^{\top}x$

 $Fx \leq f \quad \leftarrow \text{Structured} \\ \text{constraints for DD} \\ Ax \leq b \quad \leftarrow \text{Any set of linear} \end{cases}$

constraints

$$x \in \mathbb{Z}^n, \ \ell \leq x \leq u$$

Original IP model

max $c^{\top}x$

 $Fx \leq f \quad \leftarrow \text{Structured} \\ \text{constraints for DD} \\ Ax \leq b \quad \leftarrow \text{Any set of linear} \\ \text{constraints} \\ \end{cases}$

$$x \in \mathbb{Z}^n, \ \ell \leq x \leq u$$

Lagrangian model

 $\min_{\lambda \ge 0} \max c^{\top} x + \lambda^{\top} (b - Ax)$ $Fx \le f$ $x \in \mathbb{Z}^n, \ \ell \le x \le u$

Original IP model

max $c^{\top}x$

 $Fx \leq f \quad \leftarrow \text{Structured} \\ \text{constraints for DD} \\ Ax \leq b \quad \leftarrow \text{Any set of linear} \\ \text{constraints} \\ \end{cases}$

$$x \in \mathbb{Z}^n, \ \ell \leq x \leq u$$

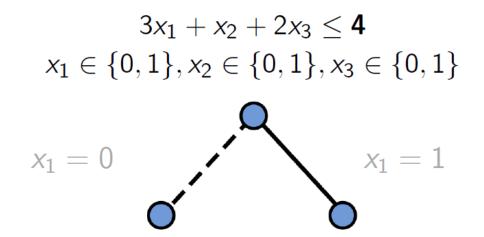
Lagrangian model

 $\min_{\lambda \ge 0} \max c^{\top} x + \lambda^{\top} (b - Ax)$ $Fx \le f$ $x \in \mathbb{Z}^n, \ \ell \le x \le u$

Lagrangian subproblem is longest path in DD (efficient)

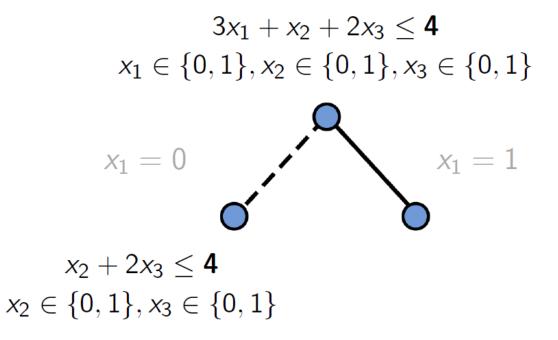
Stronger DD relaxation via Propagation

- Propagate linear constraints
- Additional state information
 - variable domains
 - constraint right-hand sides



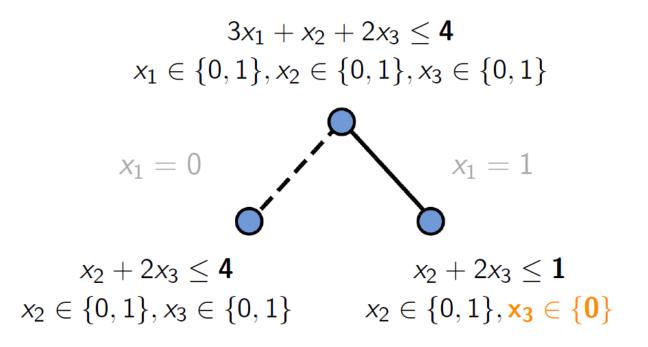
Stronger DD relaxation via Propagation

- Propagate linear constraints
- Additional state information
 - variable domains
 - constraint right-hand sides



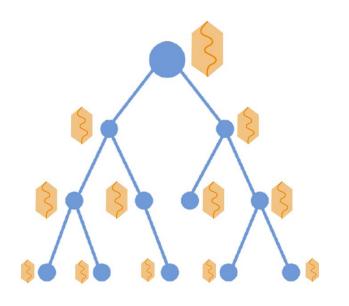
Stronger DD relaxation via Propagation

- Propagate linear constraints
- Additional state information
 - variable domains
 - constraint right-hand sides



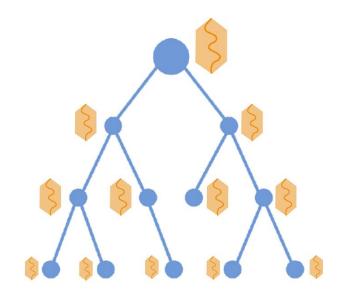
Experimental evaluation

- Experimental setup
 - Independent set problem on random graphs (Watts-Strogatz)
 - Add set of random knapsack constraints $\sum_{i \in S} a_i x_i \leq b$
 - Vary number of variables n
 - Vary number of knapsack constraints m

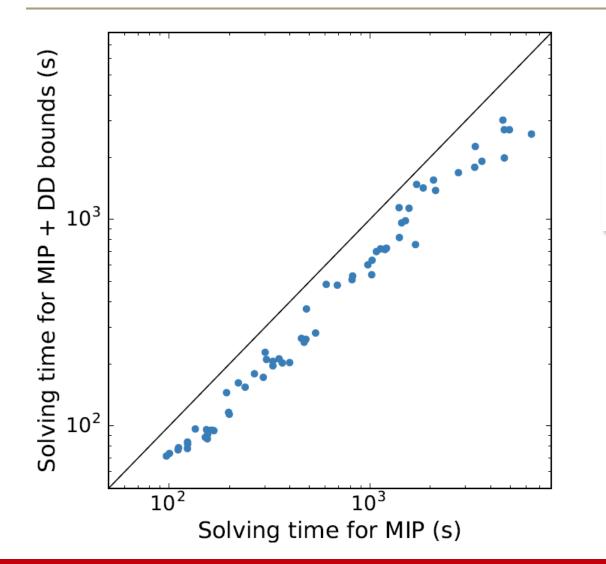


Experimental evaluation

- Experimental setup
 - Independent set problem on random graphs (Watts-Strogatz)
 - Add set of random knapsack constraints $\sum_{i \in S} a_i x_i \leq b$
 - Vary number of variables n
 - Vary number of knapsack constraints m
- Implemented in SCIP 5.0.1
 - Only IP model is given to solver
 - DD compiled automatically



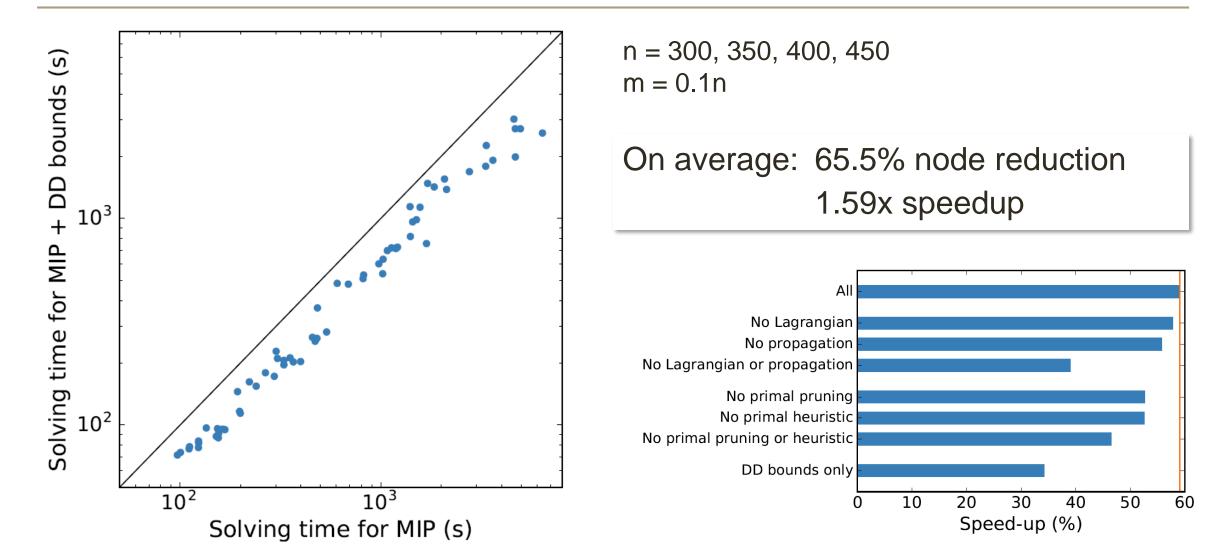
Random Graphs + Knapsack Constraints



n = 300, 350, 400, 450 m = 0.1n

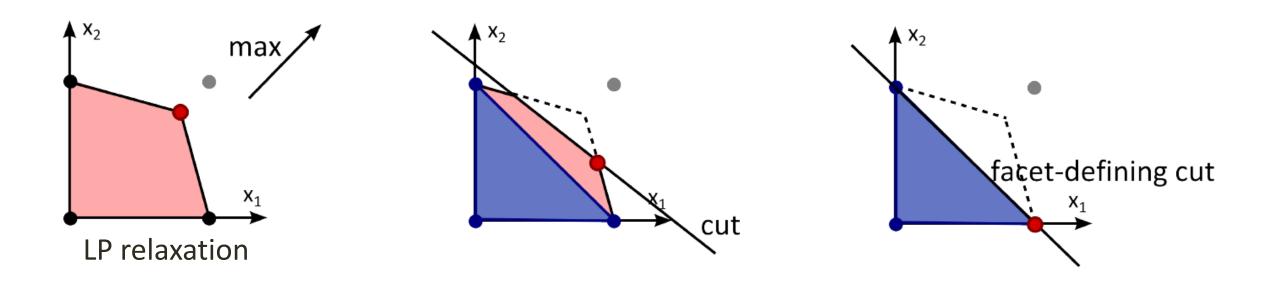
On average: 65.5% node reduction 1.59x speedup

Random Graphs + Knapsack Constraints

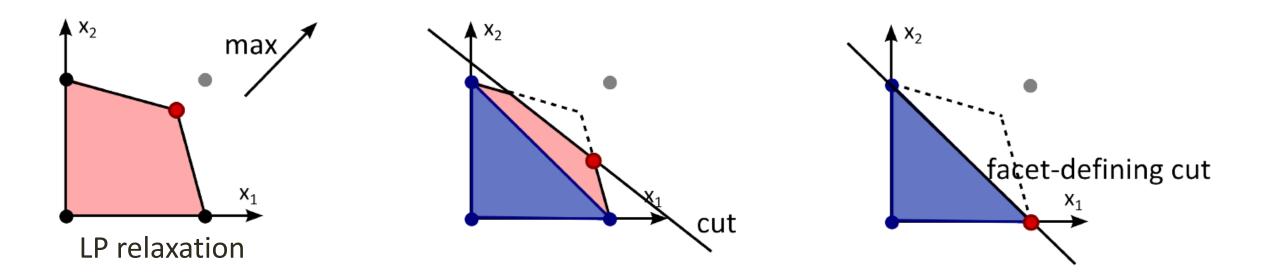


Carnegie Mellon University

Deriving Cutting Planes from Decision Diagrams

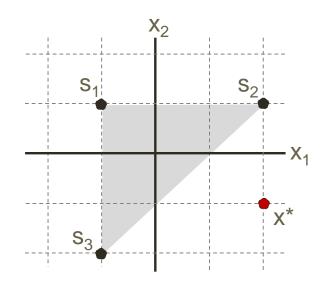


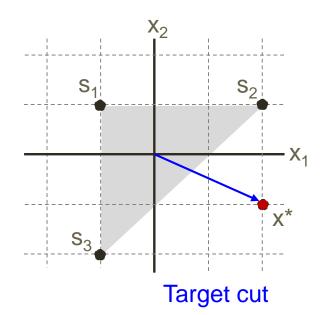
Deriving Cutting Planes from Decision Diagrams

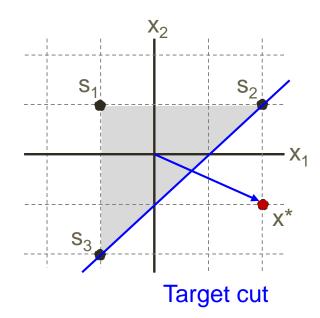


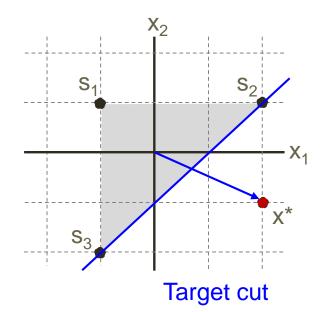
Related work: • Becker et al. [2005], Behle [2007]: Lagrangian cut generation using exact decision diagrams

• Buchheim et al. [2008]: Target cuts

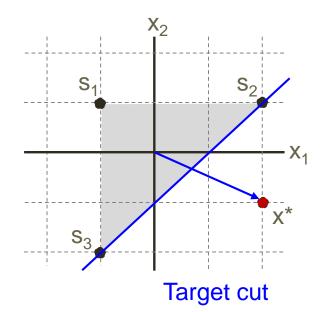


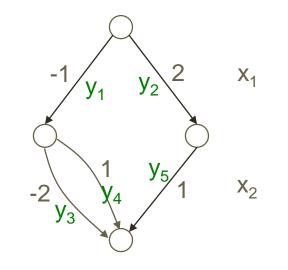


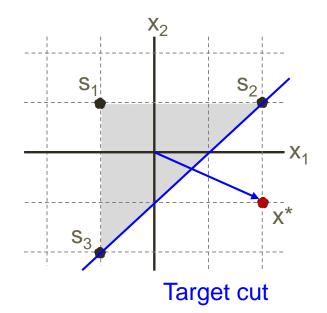


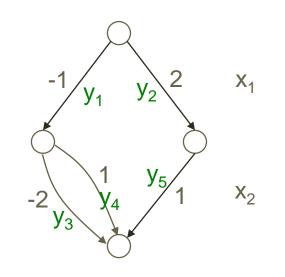






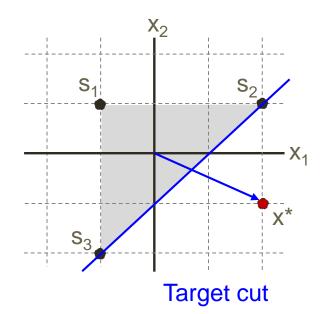


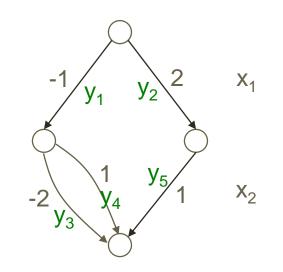




min
$$y_1 + y_2$$

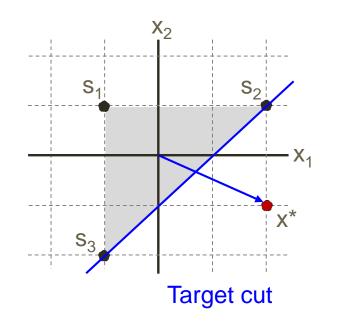
s.t. $-y_1 + 2y_2 = 2$
 $-2y_3 + y_4 + y_5 = -1$
+ flow conservation

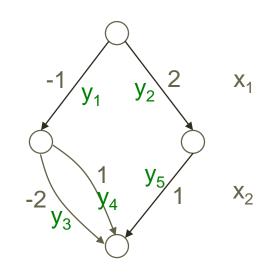




```
min y_1 + y_2
s.t. -y_1 + 2y_2 = 2
-2y_3 + y_4 + y_5 = -1
+ flow conservation
```

Solution: y₁=y₃=4/3, y₂=y₅=5/3, y₄=0





min $y_1 + y_2$ s.t. $-y_1 + 2y_2 = 2$ $-2y_3 + y_4 + y_5 = -1$ + flow conservation

Solution: y₁=y₃=4/3, y₂=y₅=5/3, y₄=0

- Solution methods
 - solve CGLP as LP (facet defining cuts) [Tjandraatmadja & vH, IJOC 2019]
 - or use subgradient method (iteratively finds longest path in DD) [Davarnia & vH]

Outer Approximation Scheme for MINLP

- Solve Integer Linear Programming relaxation: x*
- For all constraints that are violated by x*: add linearization cut
- Repeat until x* is feasible

• Requires that all functions are convex and sufficiently smooth (continuously differentiable)

[Duran and Grossmann, 1986] [Westerlund & Pettersson, 1995]

Outer Approximation with DDs

- Generate a DD (relaxed or exact) for each individual constraint
 - Done once in pre-processing phase

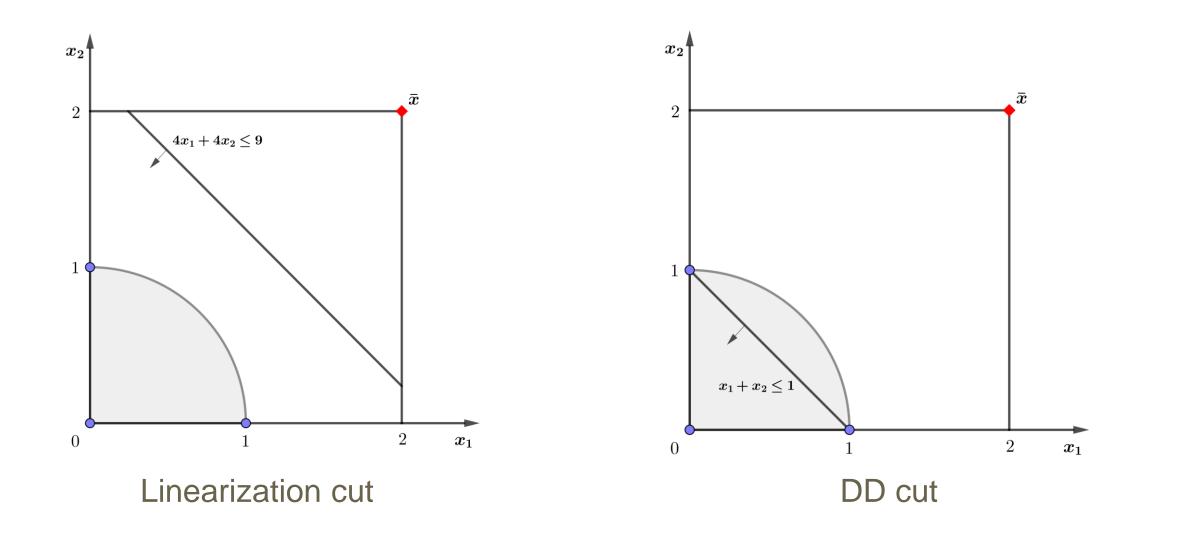
Outer Approximation with DDs

- Generate a DD (relaxed or exact) for each individual constraint
 - Done once in pre-processing phase
- Outer Approximation with DD cuts:
 - Solve Integer Linear Programming relaxation: x*
 - For all constraints that are violated by x*: add DD cut
 - Repeat until x* is feasible

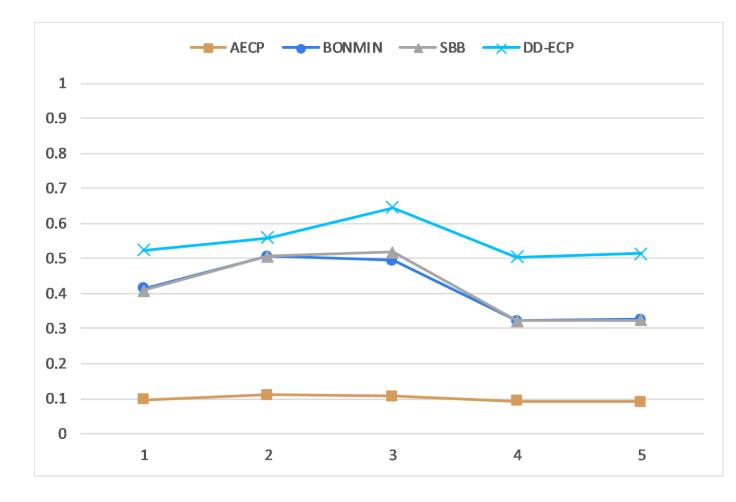
Outer Approximation with DDs

- Generate a DD (relaxed or exact) for each individual constraint
 - Done once in pre-processing phase
- Outer Approximation with DD cuts:
 - Solve Integer Linear Programming relaxation: x*
 - For all constraints that are violated by x*: add DD cut
 - Repeat until x* is feasible
- Requires that all functions are factorable
 - Can be non-convex

Outer Approximation Example



Experimental Evaluation: Polynomial Knapsack



$$\max \sum_{i=1}^{n} c_i x_i$$
s.t.
$$\sum_{i=1}^{n} a_i^j x_i^{k_i^j} \le b_j \quad \forall j \in J$$

$$\mathbf{x} \in [\mathbf{l}, \mathbf{u}] \cap \mathbb{Z}^n$$

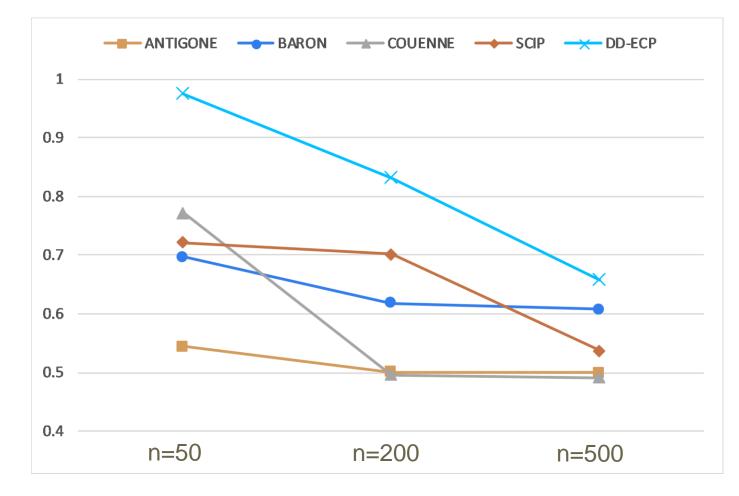
n=500, |J| = 5, bounds [0,5]degree k of monomial in {1,...,10}

5 randomly generated instances

maximum DD width is 3000 time limit is 300s

Gap closure for various outer approximation methods

Experimental Evaluation: Penetration Pricing



Gap closure for various sizes and MINLP solvers

$$\min \sum_{i=1}^{n} c_i x_i$$
s.t.
$$\sum_{i=1}^{n} a_i^j x_i e^{-x_i^{k_i^j}} \ge b_j, \quad \forall j \in J$$

$$x \in [l, u] \cap \mathbb{Z}^n.$$

Find discrete prices for n products subject to minimum revenue constraints

|J| = 5, prices {0,0.1,...,1.0} degree k of monomial in {1,2,3}

maximum DD width is 5000 time limit is 300s

Conclusion

- Decision Diagrams can be applied to Integer Programming
- Incorporate DD bounds in MIP search
 - conflict graph represented as DD
 - strengthened by Lagrangian relaxation and constraint propagation
 - up to 65.5% node reduction (1.59x speedup)
- Outer approximation for MINLP
 - applies to non-convex factorable functions
 - can outperform state-of-the-art approaches on certain problem classes

D. Davarnia & v.H. Outer Approximation for Integer Nonlinear Programs via Decision Diagrams. *Submitted.* (Available on *Optimization Online.*)

C. Tjandraatmadja & v.H. Incorporating Bounds from Decision Diagrams into Integer Programming. *Submitted*.

C. Tjandraatmadja & v.H. Target Cuts from Relaxed Decision Diagrams. *INFORMS Journal on Computing*, 2019.

C. Tjandraatmadja. Decision Diagram Relaxations for Integer Programming. PhD thesis, Carnegie Mellon University, 2018.

http://www.andrew.cmu.edu/user/vanhoeve/mdd/

David Bergma

Andre A. Čire Willem-Jan van Hoeve John Hooker

Decision

Diagrams for Optimization